If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2-20=1
We move all terms to the left:
3t^2-20-(1)=0
We add all the numbers together, and all the variables
3t^2-21=0
a = 3; b = 0; c = -21;
Δ = b2-4ac
Δ = 02-4·3·(-21)
Δ = 252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{252}=\sqrt{36*7}=\sqrt{36}*\sqrt{7}=6\sqrt{7}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{7}}{2*3}=\frac{0-6\sqrt{7}}{6} =-\frac{6\sqrt{7}}{6} =-\sqrt{7} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{7}}{2*3}=\frac{0+6\sqrt{7}}{6} =\frac{6\sqrt{7}}{6} =\sqrt{7} $
| 2n/19=10 | | x/10=14/35 | | 4/7=21/x−3 | | 1.5=1.1^x | | x/6=21/14 | | 1/4+a=2/3 | | -8b*12^.4b=-40 | | x²+6x=-41 | | n²+601n-16200=0 | | x2+6x=-41 | | x2+6x=41 | | (x+3)²=(x–4)²+7 | | x2+6x+41=0 | | x=–1 | | x=–5 | | 5-2(x-6)=10-7(x-1) | | (x–2)(x+2)=(x–1)² | | 2x(x-1)(x+3)(x-6)=0 | | 4x-+3x=-4+2+-7 | | 56t+29=4t+2 | | 3x÷4=-9 | | 3(x+2)(x+6)=0 | | x-(x+1)+2*(3x-1)=2(x+1)-2 | | 12-2x=5x-1 | | 15xx=-23 | | x–(x+1)+2·(3x–1)=2(x+1)–2 | | 2-(3x+1)+4x=x+1 | | +14x=+13x | | 3(2x+1)-(x-5)=2x-1 | | 3-7*3+4x=-18 | | 5x+0,5=-0,7 | | -5y+12=-8 |